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Abstract: Treatment of FK-506 with aqueous hydroxide results in a benzilic acid 
rearrangement of the C.8-c.10 tricarbonyl portion of the molecule. A corrected 
structure for a previously reported degradation product as well as oxidative 
decarboxylation of rearranged IX-506 is presented. 

During the course of our ongoing synthetic studies1 on FK-5062 (l), we 

had occasion to investigate the feasibility of macrolactone hydrolysis via 

cleavage of the pipecolinic ester bond of the natural material. The 

availability of the resulting hydroxy-acid would have facilitated a study of 

macrolactonization for our synthetic efforts. The stability of the unusual 

tricarbonyl array of FK-506 (C.8-C.10) during hydroxide hydrolysis was 

suggested by Tanaka and co-workers in their original structural work, 
2 

wherein 

a fragment with the structure 2 was reported to have been isolated after 

successive treatment of FK-506 with: 1N NaOH in dioxane: CH2N2i acetic 

anhydride/pyridine; and ozone. 

Herein, we wish to disclose the following: 1) a facile hydroxide-promoted 

benzilic acid rearrangement of the FK-506 tricarbonyl system: 2) a revised 

structural assignment, 3, for the above mentioned fragment based on 'H, =C 

and 2-D NMR experiments, and 3) the synthesis of a novel decarbonylated 

22-membered macrocyclic FK-506 derivative. 
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Treatment of 1 with triisopropylsilyl trifluoromethanesulfonate (TIPSOTf, 

4 equiv, excess 2,6-lutidine, CH2C12, ZS'C] afforded bis-TIPS ether 4 in 98% 

yield3 (see Scheme). Exposure of 4 to lithium hydroxide (1.03 equiv, aq. THF, 

0-25"C, 5 h) followed by acidification and extractive isolation resulted in 

complete consumption of starting material and formation of a hydroxy-acid. 4 

The presence of a carboxylic acid was indicated by isolation of ester 5b5 upon 

treatment with diazomethane. Comparison of the 13 C NMR spectrum of the acid 

with FK-506 and related compounds (vide infra) revealed that a rearrangement 

of the tricarbonyl linkage had occurred. The characteristic resonance of C.9 

(see Table) at I96 ppm (major rotamer of 1 and 4) was absent and a new 

carbonyl resonance appeared at 173.1 ppm (only observed signal assignable to 

C.9). Additionally, the C.10 resonance at 97 ppm (major rotamer of 1 and 4) 
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was shifted upfield to 82.4 ppm. The reported tendency of vicinal polyketones 

to undergo a facile hydroxide induced 1,2-acyl migration, 6 led us to interpret 

these new signals as arising from nucleophilic addition by LiOIi to the C.9 

ketone, C.10 hemiketal opening and migration of C.8 to C-10 to give 5a, rather 

than the desired open-chain hydroxy-acid. Furthermore, oxidation of 5a with 

lead tetraacetate7 (1.0 equiv, benzene, 25°C) resulted in clean decarboxyl- 

ation to produce bis-TIPS ether 6 (93% overall yield from 4). Desilylation 

(95:5(v/v) CH3CN:48% aq HF, 25°C) then afforded des-C.9-FK-506 (7), which 

appeared to exist as a single entity by 'H and l3 C NMR analysis8. 

Table. Selected l3 C NMR Chemical Shift Data for FK-506 and Related Compounds. 

13C Chemical Shifts for the C.8-C-10 Portion of FK-506 and Related Compounds 
(Major, Minor Rotamer Values in ppm in CDC13) 

1 3 4 5a 7 a13a 

C.8 164.6, 165.8 161.3 164.5, 166.1 170.8 169.7 166.5 
c.9 196.1, 192.5 167.4 196.5, 192.0 173.1 -- 197.4 
c.10 97.0, 98.6 89.3 97.7, 98.8 82.4 97.7 98.9 

Repetition of the reported degradation protocol2 of FK-506 gave a methyl 

ester monoacetate species that was spectroscopically identical to that 

described by Tanaka and co-workers. However, extensive 'H and 13c NMR 

investigations support the structure of the 

rearranged pyridooxazinedione 3, 
9 

and not the 

fragment 2. In addition to the 13C NMR data 

the loss of the C-9 ketone with formation of 

spectrum showed a doublet of doublets at 5.00 

degradation product to be the 

originally proposed tricarbonyl 

shown in the Table, indicating 

an ester carbonyl, the 'H NMR 

ppm (J = 6.4, 3.9 Hz) that was 
,n 

unequivocally assigned to 14-H (COSY-45 experiment") implying acylation of 

C.14 oxygen, not at C-10 oxygen. Two different 
13 
C 2-D NMR experiments were 

also performed to verify the positions of the acetoxy moiety at C.14. A COLOC 

experiment l1 (Correlation of Mng range coupling Constants) was performed to 

assign the acetate carbonyl (170.4 ppm), the C-19 ketone (208.1 ppm), and the 

methyl ester carbonyl (167.4 ppm). A SEIJRES12 (heteronuclear SELective-J- 

RESolved) experiment was then used to establish spin-spin coupling between the 

C.14 methine proton and the acetate carbonyl (3J = 5.0 Hz), confirming the 

C.14 acetoxy group. Evidence for formation of the pyridooxazinedione ring in 3 

comes from comparison of 1 H NMR data for the pipecolinic acid ring protons, 

particularly 2-H. In 1, 2-H appears as a broad doublet, the only resolved 

splitting a 4.5 Hz spin-spin coupling to 3-Ha,, thus defining 2-H as 

equatorial with C.l axial. In 3, C.l is constrained to an equatorial 

orientation and 2-H is now axial as evidenced by spin-spin coupling to both 
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C.3 methylene protons [3J2 3 = 11.9 Hz (axial, axial), 3.4 Hz (axial, 

equatorial)]. Further suppogt comes from NOE difference experiments on 3 

where a 4% NOE is observed from 6-Hax to 2-H (1,3 diaxial orientation). 

Compound 3 appears to be ~35% isomerically pure: however, the stereochemistry 

at C.10 is currently unknown. 

Further confirmation of the inconsistency of structure 2 with spectral 

data was gained from synthetic fragment 8.13 Comparison of the 13C chemical 

shifts (see Table) of 813a with 1 and 4 revealed similar chemical shifts for 

C.8, C.9 and C.10. The degradation product 3 however, exhibits radically 

different resonances for C.9 and C.10. Further degradative studies on FK-506 

are in progress and will be reported in due course. 
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